

PII: S0960-894X(96)00575-6

## STUDIES ON PENAM SULFONES III. SYNTHESIS AND $\beta$ -LACTAMASE INHIBITORY ACTIVITY OF SODIUM (6R)-6-( $\alpha$ -HYDROXYBENZYL)-2 $\beta$ -METHOXYIMINOMETHYL-2 $\alpha$ -METHYLPENAM-3 $\alpha$ -CARBOXYLATE 1,1-DIOXIDE AND SODIUM 2 $\beta$ -ACYL-2 $\alpha$ -METHYLPENAM-3 $\alpha$ -CARBOXYLATE 1,1-DIOXIDE

David P. Czajkowski, Andhe V.N. Reddy, Eduardo L. Setti, Oludotun A. Phillips, Ronald G. Micetich, Chieko Kunugita, <sup>6</sup> and Samarendra N. Maiti\*

SynPhar Laboratories Inc., Taiho Alberta Centre, 4290-91A Street, Edmonton, Canada T6E 5V2

<sup>o</sup>Tokushima Research Institute, Taiho Pharmaceutical Co., Ltd., Tokushima, Japan 771 01

Abstract: The synthesis and in vitro synergies of (6R)-6- $(\alpha$ -hydroxybenzyl)-2 $\beta$ -methoxyiminomethyl-2 $\alpha$ -methylpenam-3 $\alpha$ -carboxylate 1,1-dioxide (4) and 2 $\beta$ -acyl-2 $\alpha$ -methylpenam-3 $\alpha$ -carboxylate 1,1-dioxide (15) are described. Compound 15 showed good in vitro synergy in combination with piperacillin and ceftazidime against chromosomally mediated class I cephalosporinase producing organisms including TEM, SHV, and OXA-type enzymes producing microorganisms, Copyright © 1996 Elsevier Science Ltd

After the clinical success of tazobactam (1), which was originally synthesized by our group, considerable interest has been directed towards the functionalization of the  $2\beta$ -methyl group of penicillanic acid.<sup>2,3</sup> While tazobactam and clavulanic acid are highly active against class A enzymes, their activity against class C enzymes is weak. During the course of our further investigation in the penam sulfone area, we identified recently two new series of penam sulfones,  $^4$   $2\beta$ -oxyiminomethyl penam sulfones (2a) and  $2\beta$ -hydrazinomethyl penam sulfones (2b), respectively. These two classes of compounds showed improved synergy in combination with piperacillin and ceftazidime against class C enzymes (cephalosporinase) producing microorganisms except *Pseudomonas aeruginosa*. In 1985, Sammes et al.<sup>5</sup> reported that (6R)-6-( $\alpha$ -hydroxybenzyl)penam sulfone (3) is a powerful inhibitor of class C  $\beta$ -lactamase isolated from *P. aeruginosa*. On the basis of this report, we thought that the introduction of a (6R)-6-( $\alpha$ -hydroxybenzyl) group in the  $2\beta$ -oxyiminomethyl penam sulfone skeleton might improve the synergy against *P. aeruginosa*. Herein we report the synthesis and in vitro synergy of (6R)-6-( $\alpha$ -hydroxybenzyl)-2 $\beta$ -methoxyiminomethyl-2 $\alpha$ -methylpenam-3 $\alpha$ -carboxylate-1,1-dioxide (4), in a further attempt to obtain a compound with improved activity and synergy against *P. aeruginosa*.

The synergy data (Table 1) indicate that the level of synergy of compound 4 in combination with ceftazidime is very similar to the reference compounds against E. cloacae S-11, E. cloacae S-65, E. aerogenes S-97, M. morganii 36014, and M. morganii 36030, although against E. aerogenes and M. morganii compound 4 was not as active as the reference compounds. No synergy was observed against P. aeruginosa strains. Thus, the introduction of a (6R)-6- $(\alpha$ -hydroxybenzyl) group in the  $2\beta$ -methoxyiminomethyl penam sulfone skeleton did not improve synergy particularly against P. aeruginosa strains.

| Table | 1. | In | vitro | synergy | of | compound | 4 | with | ceftazidime. |
|-------|----|----|-------|---------|----|----------|---|------|--------------|
|-------|----|----|-------|---------|----|----------|---|------|--------------|

| Organism              | MIC (μg/mL) |         |                           |         |                |  |
|-----------------------|-------------|---------|---------------------------|---------|----------------|--|
|                       | CAZ         | CAZ + 1 | $CAZ + 2a$ $(R_1 = CH_3)$ | CAZ + 3 | CAZ + <b>4</b> |  |
| E. cloacae S-11       | 2.0         | < 0.25  | < 0.25                    | < 0.25  | < 0.25         |  |
| E. cloacae \$-65      | 2.0         | < 0.25  | < 0.25                    | < 0.25  | < 0.25         |  |
| E. aerogenes S-97     | 8.0         | 1.0     | 0.50                      | 2.0     | 4.0            |  |
| M. morganii 36014     | >32         | < 0.25  | < 0.25                    | < 0.25  | 2.0            |  |
| M. morganii 36030     | >32         | < 0.25  | < 0.25                    | < 0.25  | 1.0            |  |
| P. aeruginosa CT-122  | 32          | 32      | 32                        | 32      | 32             |  |
| .P. aeruginosa CT-137 | 16          | 16      | 16                        | 16      | 16             |  |

In another attempt, sodium salt of  $2\beta$ -acyl- $2\alpha$ -methylpenam- $3\alpha$ -carboxylate 1,1-dioxide 15 was prepared starting from  $2\beta$ -carboxy penam sulfone  $(13)^{3a}$  as shown in Scheme 1. Its in vitro synergy with piperacillin and ceftazidime are shown in the Tables 2 and 3, respectively. In combination with ceftazidime (Table 3) compound 15 showed excellent in vitro synergy against all G(-) organisms, although the synergy against P. aeruginosa strains was very weak, possibly due to poor penetration through these strains.

## Scheme 1

Table 2. In vitro synergy of compound 15 with piperacillin (PIPC).

| Organism Organism          |            | MIC (µg/mL) |               |
|----------------------------|------------|-------------|---------------|
|                            | PIPC alone | + TAZ       | + compound 15 |
| S. aureus 54K              | 200        | 0.78        | 6.26          |
| S. aureus 80K              | 50         | 0.39        | 3.13          |
| E. coli TEM 3              | 200        | 3.13        | 3.13          |
| E. coli TEM 7              | >400       | 0.78        | 1.56          |
| E. coli OXA 1              | 25         | 3.13        | 1.56          |
| E. coli OXA 3              | 3.13       | 1.56        | 1.56          |
| E. coli SHV 1              | >400       | 1.56        | 3.13          |
| E. coli SHV 5              | 200        | ≤0.2        | 1.56          |
| K. pneumoniae CTX 1        | >400       | 6.25        | 12.5          |
| S. marcescens 200 L        | 200        | 0.78        | 3.13          |
| P. vulgaris CT 106         | 200        | 1.56        | 25            |
| C. freundii 2046E          | >400       | 0.78        | 1.56          |
| C. freundii 44032          | 200        | 200         | 12.5          |
| P. aeruginosa 46220 (DR-2) | 100        | 12.5        | 6.25          |
| E. cloacae P99             | 100        | 25          | 12.5          |
| E. cloacae 40011           | 50         | 6.25        | 6.25          |
| E. cloacae 40015           | 100        | 50          | 25            |
| E. aerogenes 41003         | 12.5       | 12.5        | 3.13          |
| E. aerogenes 41004         | 12.5       | 12.5        | 6.25          |
| E. aerogenes 41006         | 100        | 100         | 12.5          |
| M. morganii 36014          | 50         | ≤0.2        | 0.39          |

Inhibitor conc: 5 μg/mL; TAZ: tazobactam.

Table 3. In vitro synergy of compound 15 with ceftazidime (CAZ).

| Organism                   | MIC (μg/mL) |       |               |  |
|----------------------------|-------------|-------|---------------|--|
|                            | CAZ alone   | + TAZ | + compound 15 |  |
| E. coli TEM 3              | 25          | ≤0.2  | 0.39          |  |
| E. coli TEM 7              | 12.5        | ≤0.2  | 0.39          |  |
| K. pneumoniae CTX 1        | 100         | 0.78  | 1.56          |  |
| P. vulgaris CT 106         | 12.5        | 0.39  | 1.56          |  |
| C. freundii CT 76          | 50          | 50    | 12.5          |  |
| C. freundii 44032          | 400         | 200   | 12.5          |  |
| P. aeruginosa 46220 (DR-2) | 25          | 25    | 6.25          |  |
| E. cloacae P99             | 100         | 12.5  | 6.25          |  |
| E. cloacae 40011           | 25          | 3.13  | 1.56          |  |
| E. cloacae E40002          | 200         | 200   | 12.5          |  |
| E. aerogenes 41003         | 12.5        | 12.5  | 1.56          |  |
| E. aerogenes 41004         | 12.5        | 12.5  | 1.56          |  |
| E. aerogenes 41006         | 200         | 100   | 12.5          |  |
| M. morganii 36014          | 25          | ≤0.2  | ≤0.2          |  |

Inhibitor conc: 5 µg/mL; TAZ: tazobactam.

Compound 4 was prepared as shown in Scheme 2. Conversion of the compound  $5^5$  into the corresponding azetidinone disulfide 6 was achieved by three steps through a ring opening procedure of the sulfoxide as described by Kamiya et al.<sup>6</sup> Stirring of the azetidinone disulfide 6 with chloroacetic acid in presence of silver acetate<sup>7</sup> in methylene chloride at room temperature for 16 h gave the corresponding  $2\beta$ -chloroacetyloxymethyl- $3\alpha$ -carboxylate 7 as the major product. The mixture was directly subjected to oxidation with KMnO<sub>4</sub> in a mixture of acetone-water-glacial acetic acid to afford the corresponding penam sulfone 8 along with the cepham sulfone in a ratio of 2:1. Heating of the mixture with thiourea in ethanol at 60 °C for 70 min gave the  $2\beta$ -hydroxymethyl penam sulfone 9. Oxidation of the alcohol 9 with pyridinium chlorochromate in methylene chloride at room temperature for 24 h gave the  $2\beta$ -carboxaldehyde 10, which on treatment with

methoxylamine hydrochloride in presence of pyridine in a mixture of methylene chloride and ethanol gave the oxime 11 in about 58% yield. Removal of the *t*-butyldimethylsilyl group by treatment with 48% HF in acetonitrile at room temperature for 1 h afforded the benzhydryl (6R)-6-( $\alpha$ -hydroxybenzyl)-2 $\beta$ -methoxyiminomethyl-3 $\alpha$ -carboxylate-1,1-dioxide 12 in 60% yield. Hydrogenation of compound 12 over Pd/C in ethanol at 50 psi for 48 h gave the free acid, which on treatment with NaHCO<sub>3</sub> gave the desired compound 4. For <sup>1</sup>H NMR, see Table 4.

## Scheme 2

The benzhydryl ester of the  $2\beta$ -carboxy penicillanic acid sulfone (13)<sup>3a</sup> was treated with oxalyl chloride in presence of a catalytic amount of DMF to give the corresponding acyl chloride which was directly reacted with CH<sub>3</sub>MgBr in presence of CuI to provide the benzhydryl ester of  $2\beta$ -acyl penicillanic acid sulfone 14. Removal of the ester protecting group by TFA/anisole followed by treatment with NaHCO<sub>3</sub> gave the corresponding sodium alt 15 in 90% yield. For <sup>1</sup>H NMR see Table 4.

Table 4 H NMR data of compounds 4 and 15

| Table 4. n | NVIR data of compounds 4 and 15.                                                                                                                                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound   | ¹H NMR (DMSO-d <sub>6</sub> , δ ppm)                                                                                                                                                             |
| 4          | 7.50 (s, 1H); 7.25-7.43 (m, 5H); 5.75 (br, m, 1H, exchanged with $D_2O$ ); 5.30 (d, 1H, $J = 10.6$ Hz); 4.78 (d, 1H, $J = 4.7$ Hz); 4.27 (s, 1H); 4.20-4.30 (m, 1H); 3.80 (s, 3H); 1.38 (s, 3H). |
| 15         | 5.03 (dd, 1H, $J = 1.0$ and 4.2 Hz); 4.78 (s, 1H); 3.54 (dd, 1H, $J = 4.2$ and 16.0 Hz); 3.11(dd, 1H, $J = 1.0$ and 16.0 Hz); 2.40 (s, 3H); 1.58 (s, 3H).                                        |

## References

- Micetich, R. G.; Maiti, S. N.; Spevak, P.; Hall, T. W.; Yamabe, S.; Ishida, N.; Tanaka, M.; Yamazaki, T.; Nakai, A.; Ogawa, K. J. Med. Chem. 1987, 30, 1469.
- (a) Richter, H.; Hubschwerlen, C.; Kania, M.; Kohl, I.; Page, M. G. P.; Specklin, J.-L.; Then, R. 34th Interscience Conference on Antimicrob. Agents Chemother., Orlando, Oct. 4-7, 1994, Poster No. F-147. (b) Richter, H. G. F.; Angehrn, P.; Hubschwerlen, C.; Kania, M.; Page, M. G. P.; Specklin, J.-L.; Winkler, F. K. J. Med. Chem. 1996, 39, 3712.
- 3. (a) Setti, E. L.; Reddy, A. V. N.; Phillips, O. A.; Czajkowski, D. P.; Atchison, K.; Atwal, H.; Micetich, R. G.; Maiti, S. N.; Kunugita, C.; Hyodo, A. J. Antibiotics, 1996, 49, 944. (b) Reddy, A. V. N.; Setti, E. L.; Phillips, O. A.; Czajkowski, D. P.; Atwal, H.; Atchison, K.; Micetich, R. G.; Maiti, S. N.; Kunugita, C.; Hyodo, A. J. Antibiotics, in press.
- 4. Maiti et. al US Pat. Appln pending.
- 5. Foulds, C. D.; Kosmirak, M.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1 1985, 963.
- Kamiya, T.; Teraji, T.; Saito, Y.; Hashimoto, M.; Nakaguchi, O.; Oku, T. Tetrahedron Lett. 1973, 3001.
- 7. Spry, D. O. J. Org. Chem. 1979, 44, 3084.